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Abstrad. Lattice constants and bond lengths in crystalline Sil-,Ge, alloys are calculated by 
the bond orbital model md ndial force model. The results are compared with theoretical results 
obtained by the valence force-field model calculation and experimental reSuLts obtained by x-ray 
diffraction and extendeded x-my absorption fine-structure measurements, and are found to be in 
good agreement with experiments. The trends in elastic consmts and electronic band svuctwe 
as functions of composition x are obtained in the simple virmal-crystal approximation. 

1. Introduction 

The atomic structure of an alloy is important for understanding its properties, in which bond- 
length relaxation and the lattice constant are the key parameters. Theories of bond-length 
relaxation and the lattice constant in alloys were put forward by Pauling and Vergard a long 
time ago. Pauling [ 11 noted that the bond lengths in an alloy are the sum of their constituent- 
element atomic radii, i.e. the bond lengths are independent of the alloy composition. Vegard 
[2] discovered that the lattice constant is approximately equal to the composition-weighted 
average of the lattice constants of the pure materials, i.e. the lattice constant is dependent 
on the alloy composition. 

Crystalline silicon-germanium (c-Sit-,Ge,) alloy is one of the important semiconductor 
materials, and is known to form solid solutions over the entire composition range. Its local 
structures have been determined by x-ray diffraction and extend x-ray absorption fine- 
structure (EXAFS) experiments [3]. These have indicated that the G d e  and G e S i  bond 
lengths are close to the sum of their constituent-element atomic radii, i.e. nearly follow 
the Pauli limit, but the lattice constant varies monotonically and exhibits a small, negative 
deviation from Vegard's law. Its atomic structures have also been studied theoretically. 
For the lattice constant of c-Sil-,Ge, alloys, de Gironcoli er al [4] obtained a positive 
deviation from Vegard's law, and Mousseau and Thorpe [5] obtained the exact Vegard's 
law from their theoretical study. These results are not consistent with the result of the 
x-ray diffraction measurement [3]. Using a valence force-field (VFF) model, Ichimura el al 
[6] have calculated the bond lengths in Sil-,Ge, alloys. Their results are consistent with 
those of the earlier calculations [7], but they are inconsistent with the experimental results 
obtained by the EXAFS technique [31. 

In this paper we illustrate how the lattice constant of Sil-,Ge, alloys and the bond 
lengths dGe-Ge. d s i - ~ ~  and &-si in the dilute limit can be simply predicted. Then 

0953-8984/95/183529+10$1950 @ 1995 IOP Publishing Ltd 3529 



3530 S-G Shen et a1 

under the simple virtual-crystal approximation (VCA), the trends of elastic constants and 
the electronic band shucture versus composition x are calculated. NI of the results are 
compared with experimental and other theoretical results. 

2. Theoretical formalism 

2.1. Lanice constant 

Using the tight-binding (TB) theory, we can obtain approximate but meaningful predictions 
of the bonding properties of solids. Following the ideas and methods proposed by Harrison 
[8], Baranowski [9] made a very simple modification of the overlap interaction, and gave a 
formula for the bond lengths of semiconductors. For all tetrahedral compounds, the bond 
length do can be obtained from 

where for sp3 bonds 

qo = (1/4)qrss - (2fi/4hspo - (3/4)qppo 

in which qsso = -1.4, qzpspo = 1.84 and qppo = 3.24 are dimensionless Harrison universal 
parameters, and h 2 / m  = 7.62 eV A'. The effective k parameter will be given by the 
following average: 

k = (kikj)'" (2) 

where ki and kj are connected with rows i and j of the periodic table, respectively. The 
cation-anion average hybrid energy & is the weighted average 

(3) 

where n, and n, are the numbers of electrons associated with the cation and anion, 
respectively, which participate in the bonds. The terms E: and E; are the averages of 
the cation and anion hybrid energy respectively, the V3 is the hybrid polar energy, which 
can be approximated in the following way: 

&, = , ( n c ~ i  I + nasi) 

v3 = ; (E; - si).  (4) 

Here, equation (1) is used to calculate the average bond length for Sil-,Ce, alloys. On 
the basis of Vegard's picture, the lattice constant is  given simply as 4d/&. According 
to the values of k) = 1.45, kq = 1.33 and ks = 1.12 for Si, Ge and Sn rows given by 
Baranowski [9], we have k4 Y (k3 + k ~ ) / 2  + (ks - k5)/8, i.e. !Q is larger than the average 
of k3 and kS. So we can assume that the average value of the appropriate k parameters for 
Sil-,Ge, alloys is linear, with a small positive correction. A relatively simple assumption 
that one can make is 

ki = kj = (1  - x)ksi +XkCe + [ ~ ( l  -~)]"~Iksi  - kc,1/4 (5 ) 



Tight-binding studies of crystalline SiGe alloys 353 1 

where ksi and ko, are the k parameters for pure Si and Ge, which can be determined by 
using the bond length or lattice constant obtained by experiment [3]. The average hybrid 
energy is linearly interpolated as a function of x ,  i.e. [lo] 

&: = E t  = (1 -x)&,s’ + x E p  (6) 

where E? and E$ stand for the average of the silicon and germanium hybrid energy, 
respectively, 

and E:, &:, 

germanium, respectively [ill. 

2.2. Bond-length relaxation 

Harrison’s bonding theory, the valence force field (VFF) and an elastic continuum have 
been combined in a study of the substitution energy and local bond lengths of isoelectronic 
impurities in semiconductors [12]. Several models based on VFF alone are also derived for 
comparison. Comparison among the models show that, while extending the boundary helps 
the relaxation, the inclusion of the bond-bending forces prevents it. The comparison of 
the theoretical results with the available experimental data indicates that some models are 
the least accurate, and some models have a smaller average absolute deviation. The most 
surprising results is that the simple spring model (radial force model [13]) has the smallest 
variance in bond length. The reason is that the simple spring model, which contains neither 
of these terms, evidently represents a delicate cancellation of these effects and predicts 
results close to those of the full perturbation theory and experiment. 

In this section we consider two models based on Harrison’s bonding theory and the 
valence force field, i.e. bond orbital model and radial force model. 

2.2.1. Bond orbital model.. The approximate estimation of impurity-host relaxation in 
semiconductors has been suggested by Baranowski [9] .  In the notation of Harrison [8], the 
gain in the impurity-host bond energy per bond connected with a distortion Ad ( A d  > 0 
outward and Ad c 0 inward) can be calculated as follows: 

and E$ are the free-atom energies for s and p states for silicon and 

A E b = A E i + 3 A E i  (8) 

where AE: and AE; are, respectively, the changes in the energies of the bonds caused by 
distortion in the nearest- and second-nearest-neighbour atom positions. These are given by 

AE; = -2([V;(do + A d )  + V,’]’/z - V z  z ( d o -I- A d ) / k l %  - [V;(do) ~ V ~ ] ’ ’  

+ V ~ ( d o ) / ~ l ~ d l  (9) 

and 

AE; = -2([V;(do + Ad’) + V;z]l /z  - V” 2 ( d o + Ad’)/k’lZLl - [V?(do) + V:ll’ 

+ V?(do)/k‘l41l (10) 

where Vz (= r@/md-z), V, and klal refer to the covalent, polar and average hybrid 
energy of the impurity nearest-neighbour bond, respectively, and Ad’ is the change in the 
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Figure 1. (a) An impurity atom I1 (Si or Ge) substitutes for a Ge or Si atom in a Ge or Si 
crystal; the telrahednl symmetry is preserved at the impuriw (11) ah" (b)  Two impurity atoms 
I I  and 12 substitute for two Ge or Si atoms in a Ge or Si crystal; the D ~ J  symmetry is prese~ed 
at the mid-point of the impurities I I  and 12. 

bond length between the first and second nearest neighbours. If we hold the second nearest 
neighbours fixed, the following formula can be obtained: 

Ad' = Id: - 2/3&Ad + (Ad)z]l" - &. 

Under the first-order approximation, 

Ad' = - A d / 3 .  (11) 

The terms Vi, Vi and k'l$I are the covalent, polar and average hybrid energy of the host 
crystal [ 101, respectively. 

Within this approximation the minimum of the total energy predicts the impurity-host 
relaxation. 

When there is an impurity (11, see figure I(a)) Ge (or Si) atom in a Si (or Ge) crystal, its 
nearest-neighbour atoms would relax outward (or inward). According to the above method, 
the local relaxation Ad, can be obtained at the minimum of the total energy A E , ,  so the 
bond length between I1 and AI k d!A = + Ad, and the bond length between A1 and 

Then, ssume that another impurity I2 substitutes one of the nearest-neighbour atoms 
of impurity I1 (see figure I(b)). Suppose that the symmetry of the relaxation is held. Let 
us call Ad, the outward relaxation displacement of the two impurity atoms, and Ad, the 
outward relaxation displacement of the six A atoms, which are the nearest-neighbour atoms 
of the two impurity atoms. The energy associated with the distortion is 

(12) 

where AE;, AE; and AEg are, respectively, the changes in the energy of the bonds caused 
by distortion in the impurity-impurity, impurity-host and host-host systems. These are 
given by 

AE; = -2{[V;'(do + 2Ad1) + V;nll /z  - Vi'(do + 2Adi)/k"lB;I 

B 1 is dAB = & -t Ada. 

A Ed"= A El + 3AEi + 9AEg 

- [ V p ( & )  + V;nI'/Z + V;~(&)/k"lz;It (13) 

AE; = -Z([V:(do + Ad, + Ad;) + V:I'Iz - V;(do + AdA + Ad,')/kI&l 

- [V:(do) + V:l1' + V~(do) /kI&J1  (14) 
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and 

Within this approximation, the minimum of the total energy predicts the impurity- 
impurity relaxation, the bond length of impurity-impurity dn = & +2AdI ,  the bond length 
of impurity-host ~ I A  = do + AdA + Ad; and the bond length of host-host dAB = do + Ada. 

2.2.2. Radial force model. The nearest-neighbour bond length in a pseudobinary alloy 
is explained by a simple radial force-constant model (RFM) [ 12,131 in which the weak 
angular forces are neglected. Here, we will show the bond lengths of the nearest-neighbour 
impurities in a binary alloy. 

Consider a crystal of element A (e.g. semiconductor Si) in which one of the A atoms 
is replaced by an impurity I (e.g. Ge) atom. This configuration represents the dilute limit 
of I-A in an A host. In this configuration, four I-A bonds are identical and the tetrahedral 
symmetry (Td) is preserved at the I atom. Let us call k the stretching force constant for 
the host A and Ad, the outward relaxation displacement of the A atoms. Then Ad]& the 
amount by which the final I-A bond length deviates from d k  (where d$ is the bond length 
of the zincblende structure IA, which is approximately equal to the average of the bond 
lengths of I and A crystals) is d: + Ad, - d k .  The bond lengths of the neighbouring A-B 
bonds are decreased -Ad.& The energy associated with the distortion is 

E 4[(k/2)(d:  + Ad, -&A)’ + 3(k / z ) (Ad~/3 ) ’1 .  (16) 

By minimizing the energy with respect to AdA we obtain 

(17) 3 0  AdA = a(dlA - d j )  

or the deviation of the I-A bond length 

Ad], a(4 - d k ) .  (18) 

Now, consider a crystal A in which two nearest-neighbour A atoms are replaced by 
two I atoms. Qis configuration represents the dilute limit of 1-1 in an A host. In this 
configuration, six I-A bonds are identical and the D3d symmetry is preserved at the mid- 
point between the two I atoms. Let us call Ad1 the outward relaxation displacement of the 
two I atoms and Ad, the outward relaxation displacement of the six A atoms, which are 
the nearest-neighbour atoms of the two I atoms. The energy associated with the distortion 
is 

E = (k/2)(d: + 2Adr - d;)’ + 6(k/2)(d: - Adr/3 - d k  + Ad,)’ 

+ 18(k /2 ) (Ad~/3 ) ’ .  (1% 

By minimizing the energy with respect to AdA and Ad, we obtain the analytic expressions 
for the bond-length deviations of the solution in the dilute limit: 

Ad, = lj 1 ( l2dp - 3dpA - 9 8 )  = ( d k  - d:) 

Ad,  = %(3d: I + l8dk 1 .214)  = z(dp, - d o  (20) A). 
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3. Results and discussion 

In this section we present the results of our tight-binding bond orbital model (BOM) 
calculations for the lattice constant in Sil-,Ge, alloys and the results of BOM and RFM 
for the relaxation of the nearest-neighbour atoms around isovalent impurities Ge in Si and 
Si in Ge. The trends in elastic constants and the electronic band structure as the function 
of composition x are given in this section. 

3.1. Lanice constant 

Prediction of the lattice constant for Sil-,Ge, is given in figure 2 by the full curve. 
The dependence of the lattice constant on Ge composition obtained by x-ray diffraction 
experiment [3] is shown by the open squares; the lattice constant deviates (downward 
bowing) slightly from Vegard's law (shown by the broken line). From figure 2. it is clear 
that our results are in excellent agreement with the experimental data 131. In fact, if the last 
term in equation (5) is neglected, the exact Vegard's law will be obtained, so the definition of 
equation (5) is very important for the lattice. In the framework of pseudopotential ab initio 
calculations, de Gironcoli et al [4] obtained an upward bowing, i.e. lattice constant with a 
small positive deviation from Vegard's law. Mousseau and Thorpe [5] obtained the exact 
Vegard's law from their theoretical study. Very recently, Xu [14] has calculated the bond 
lengths and lattice constant in Sit-,Ge, alloys by use of the empirical tight-binding force 
method; the results show that the lattice constant generally obeys Vegard's rule. According 
to our calculation, the largest negative deviation is about -0.58% at x n. 0.5. This deviation 
is probably caused by a difference in the relaxation of the impurity (see table 1, the results 
of BOM), i.e. a small impurity (Si in Ge crystal) has a larger relaxation than that of a larger 
impurity (Ge in Si crystal). The lattice constant of zincblende Si,/Gef superlattice has been 
calculated by use of the local-density approximation (LDA) [ 151 method; the result shows 
that the lattice constant of SillGel superlattice is about 0.2% smaller than that of the average 
of bulk Si and Ge. 
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Table 1. Predictioas of the impurity bond lengths for four systems (Si:Ge, Si:GeGe, Ge:Si 
and Ge:SiSi). AU the bond lengihs and their changes are in Angstroms; 5 is the dimensionless 
relaxation parameter. 

Si:Ge 2.352 0.0343 2.386 2.340 0.73 EOM 
2.352 0.0353 2387 2.340 0.75 RFM 

Ge:Si 2.446 -0.0364 2.409 2.458 0.77 BOM 
2.446 -0.0353 2.411 2.458 0.75 RFM 

System Ad1 ALIA dii Ilu ~ A E  C Method 

Si:GeGe 0.0386 0.0439 2.429 2.383 2.337 0.82 BOM 
0.0396 0.0452 2.432 2.384 2.337 0.84 RFM 

Ge:SiSi -0.0405 -0.0468 2.365 2.413 2.461 0.86 BOM 
-0.0396 -0.0452 2.366 2.414 2.461 0.84 RFM 

3.2. Bond lengths 

Predictions of the bond lengths around the impurity for four systems (Si:Ge, Si:GeGe, Ge:Si 
and Ge:SiSi) are given in table 1. It can be seen from table 1 that the local atomic structures 
for a single impurity and double impurities are nearly the same. According to the results 
obtained from BOM, for Si:Ge and Ge:Si systems, the lattice relaxations (Ad*) are 0.0343 
and -0.0364 A, respectively. The bond length of GeS i  is in the range of 2.386 to 2.409 A. 
For the Si:GeGe and Ge:SiSi systems, Ad, are about 0.0386 and -0.0405 A, respectively, 
so the small impurities have large relaxation. The cause of this small effect is that the 
bond-stretching force constant CY of Si is larger than that of Ge [16]. We also find from 
table 1 that the bond lengths (2.429 and 2 .36  A) of Ge-Ge in Si and S i S i  in Ge are 
approximately equal to the bond lengths (2.446 and 2.353 A) of crystal Ge and Si, and that 
the bond length of Ge-Si is in the range 2.383 to 2.413 A. For dilute alloy systems, the 
probabilities of Si:Ge and Ge:Si are larger than Si:GeGe and Ge:SiSi, respectively, so the 
bond length of G e S i  is mainly in the range of 2.386 to 2.409 A. The results obtained by 
using the radial force model (RFM) [ 12,131 are also given in table 1. It is clear that the 
results obtained from simple RFM are consistent with the results from BOM. However, RFM 
cannot give the difference between the dimensionless relaxation parameters of SiGe and 
Ge:Si, because the difference of elastic constants of Si and Ge is neglected. 

Ichimura et a1 [6] have recently calculated the bond lengths in crystalline Sil,Ge, 
alloys by a VFF model. The dimensionless relaxation parameters 6 for Ge-Ge, S i S i  and 
Si-Oe bonds are about 0.6, which is consistent with the results (0.58 for Si:&, 0.63 for 
Ge:Si) obtained by Martins and Zunger [7]. However, a serious discrepancy exists between 
the VFF calculation and the WAFS analysis [3]. According to our calculation, the 6 values 
for Ge-Ge and S i s i  are about 0.84, and for Si-Ge and Ge-Si about 0.75, respectively. Our 
results are closer to the results obtained by the EXAFS experiment [3]. But the difference 
between our results and EXAFS experimental results is also significant. In view of Mousseau 
and Thorpe [17], the EXAFS experimental results, i.e. 6 values for Ge-Ge and G e S i  close 
to 1.0, are caused by the existence of hydrogen in the samples, and E M S  measurements 
on Sil-,Ge, samples are not containing hydrogen are required. 

Using the fact that the long-range order is maintained, as confirmed by x-ray diffraction, 
the weighted-average bond length over &-si, &-ce and &-Fe must follow the average 
bond length i.e. 
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Because do has a small negative deviation from Vegard’s law, the bond lengths dsi-si, 
doe-& and dsj-a will also have small negative deviations from a linear average. 

It is clear from EXAFS experiments that the relationship between the bond length dGe-Gc 
and the composition is nearly linear (it has a negative deviation, but it is very small). So 
ow model for the dilute alloy can be extended to the whole range of composition by a linear 
interpolation of the data of the end-point materials. Our BOM results of the Si-Si, Ge-Si 
and Ge-Ge bond lengths in crystalline Sil-,Ge, alloys are shown in figure 3 along with 
the experimental results obtained by the EXAFS technique [3] and the results calculated by 
the VFF model 161. Ow results show that the G d e ,  Ge-Si and S i s i  bond lengths tend 
to maintain their respective values: nearly 2.446 A for the Ge-Ge bond, 2.397 A for the 
Ge-Si bond and 2.352 A for the S i s i  bond. It is clear that our results are better than that 
of the VFF model, and are in good agreement with the EXAFS experiment [3]. However, 
the S i s i  bond length i n  the alloy has not been investigated in the EXAFS experiment [3]. 
According to our results, the Si-Si bond length is in the range of 2.352 to 2.365 A, which 
is close to the sum of the Si atomic radii. 

From figure 3. it is clear that the three full lines are not parallel. The reason for this 
is that the dimensionless relaxation parameters for the four systems (SkGe, Si:GeGe, Ge:Si 
and Ge:SiSi) are different (as can be seen from table 1). This is a significant feature of our 
results in comparison to others [4-7,161. 

3.3, Elastic comtanls 

The elastic constants of a SVGe superlattice have been calculated by use of the local- 
density approximation (LDA) [I51 method. However, to the best of our knowledge, the 
elastic constants of crystalline Sil-,Ge, alloys have never been measured nor calculated. 
Because the polarity of crystalline Si,_,Ce, alloys is independent of composition x and 
because the average bond length do changes with composition x .  according to our previous 
work [I61 under the virtual-crystal approximation (VCA), i.e. the bond length of crystalline 
Sil-,Ge, alloys is taken as the average bond length do, the elastic constants B ,  CII, C12 
and CU will vary directly as d;’, and a and p will vary directly as dC4. When the average 
bond length follows Vegard’s law exactly, the trends in elastic constants as a function of 
composition x have a very small negative deviation from the linear average, as shown by 
the dotted line in figure 4. In fact, because the average bond length has a negative deviation 
from Vegard’s law, the trends in elastic constants as a function of composition x have a 
positive deviation from the linear average, as shown by the full curve in figure 4. The 
largest deviations for elastic constants B ,  CL1, Clz and C, are about 2.68, and for 01 and p 
are about 2.2% at x = 0.5. The results for elastic constants 8, CII ,  Clz and CU in SillGel 
superlattice obtained by LDA are 1.158, 2.7%. 0.9% and 3.4%, respectively. So our results 
are comparable with the LDA results. As we know, the LDA has proven to be an effective 
and useful method for studying both structural and electronic properties in many materials, 
and the results for elastic constants in Si and Ge crystals are in excellent agreement with 
the experimental results. So if we think the results for Sil/Ge, superlattices are correct, our 
results for crystalline Sil-,Ge, alloys are reasonable. 

3.4. Electronic band structure 

To calculate the energy band structure of crystalline Sil-,Ge, alloys, we use the virtual- 
crystal approximation and define the Hamiltonian of the alloy in terms of the pure-crystal 
Hamiltonian [18]. Following Harrison [SI, the weighted-average TB parameters for the 
alloy crystal including the on-site matrix elements, the second-neighbour and third-neighbour 
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Figure S. The conduction band edge ai B function of 
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be the top of the valence band edge for all x.  The 
crossover point occurs nt x = 0.97. 

parameters are linearly interpolated as a function of x ,  while the first-neighbour off-diagonal 
matrix elements P are interpolated assuming that PdZ is a constant [19]. Figure 5 reveals 
clearly the dependence of the minimum gap on x .  We find that the crossover point from 
an indirect gap at L (0.5,0.5,0.5)21r/a to (0.81,O. 0)27r/a near X (1,0,0)2rr/a occurs at 
x = 0.97; the bottom of the conduction band is at (0.81,0,0)2a/u for x = 0.97 varying 
to (0.85,0,0)2z/a for x = 0. Our result x = 0.97 is in reasonable agreement with 
experimental results [20], x = 0.85. Our results differ from those of Talwar et al [IO], who 
obtain x = 0.8, and of Newman and Dow [21], who obtain x = 0.75. The small disparity of 
the x values is probably due to the choice of different TB schemes (the host band structure 
for Si and Ge is described with the TB parameters up to and including third, second [lo] and 
first neighbours [21], respectively) and the methods adopted in evaluating the parameters 
by fitting different non-local pseudopotential data for the host band structures. It is nearly 
independent of the choice of the average bond length, i.e. using the Vegard's bond length 
or the bond length with a small negative deviation from Vegard's law. So although the 
change in bond length (i.e. small negative derivation from Vegard's law) has an effect on 
the structure of the energy band, the effect is very small. 

4. Conclusions 

The bond orbital model is used to predict the lattice constant and Si-Si. Ge-Si and G e G e  
bond lengths in crystalline Si,-,Ge, alloys. 'The results are compared to other theoretical 
and experimental results, and are found to be in good agreement with x-ray diffraction and 
EXAFS experiments. The ladice constant varies monotonically, and has a small negative 
deviation from Vegard's law. The Ge-Ge, Ge-Si and Si-Si bond lengths are close to 
the Pauling limit, but are composition-dependent; they also have small negative deviations 
from linear averages. The trends in elastic constants as a function of composition x have a 
positive deviation from the linear average. The bottom position of the conduction band is 
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changed with the variation of x .  The effect of change in average bone length on electronic 
band structure is very small. 
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